Retinal Arteriolar Morphometry Based on Full Width at Half Maximum Analysis of Spectral-Domain Optical Coherence Tomography Images
نویسندگان
چکیده
OBJECTIVES In this study, we develop a microdensitometry method using full width at half maximum (FWHM) analysis of the retinal vascular structure in a spectral-domain optical coherence tomography (SD-OCT) image and present the application of this method in the morphometry of arteriolar changes during hypertension. METHODS Two raters using manual and FWHM methods measured retinal vessel outer and lumen diameters in SD-OCT images. Inter-rater reproducibility was measured using coefficients of variation (CV), intraclass correlation coefficient and a Bland-Altman plot. OCT images from forty-three eyes of 43 hypertensive patients and 40 eyes of 40 controls were analyzed using an FWHM approach; wall thickness, wall cross-sectional area (WCSA) and wall to lumen ratio (WLR) were subsequently calculated. RESULTS Mean difference in inter-rater agreement ranged from -2.713 to 2.658 μm when using a manual method, and ranged from -0.008 to 0.131 μm when using a FWHM approach. The inter-rater CVs were significantly less for the FWHM approach versus the manual method (P < 0.05). Compared with controls, the wall thickness, WCSA and WLR of retinal arterioles were increased in the hypertensive patients, particular in diabetic hypertensive patients. CONCLUSIONS The microdensitometry method using a FWHM algorithm markedly improved inter-rater reproducibility of arteriolar morphometric analysis, and SD-OCT may represent a promising noninvasive method for in vivo arteriolar morphometry.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملUpdate on retinal vessel structure measurement with spectral-domain optical coherence tomography.
This study was conducted to demonstrate a new scan method for retinal vessel structure measurement in a specific region of fundus (zone B) using spectral-domain optical coherence tomography (SD-OCT), and to assess its reliability. One temporal superior retinal vessel pair passing through a concentric ring (zone B), which was defined between half and one disc distance from the optic disc border,...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملFull-range k-domain linearization in spectral-domain optical coherence tomography.
A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed lin...
متن کاملUltrahigh Resolution Spectral-Domain Optical Coherence Tomography at 1.3 μm Using a Broadband Superluminescent Diode Light Source
We present an ultrahigh resolution spectral-domain optical coherence tomography imaging system using a broadband superluminescent diode light source emitting at a center wavelength of 1.3 μm. The light source consists of two spectrally shifted superluminescent diodes that are coupled together into a single mode fiber. The effective emission power spectrum has a full width at half maximum of 200...
متن کامل